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Abstract-An inverse heat conduction problem arises when temperature measurements are taken in the 
interior of a body. and the temperature and heat flux on the surface are desired. A new approach to the 
solution of this class of problems is introduced. It relies on the concept of state and disturbance observers 
which is well-known from systems theory. The complete temperature profile in the heat conducting hod! 
as well as the surface heat flux and temperature can be computed from one or several interior temperature 
measurements by means of a non-linear distributed parameter observer. The technique is introduced and 
analysed theoretically by means of a simple tutorial example. The approach is finally applied to a difficult 
inverse problem of technical significance. The time history of local heat flux and temperature oscillations 
at the inner surface of an evaporator tube are estimated during transition boiling conditions. Experimental 

results with boiling refrigerant RI I4 Rowing upward in an electrically heated tube are presented. 

1. INTRODUCTION 

THE ‘inverse problem’ of heat conduction constitutes 
of the determination of surface temperature and heat 
flux from temperature measurements inside a heat 
conducting body. In contrast to direct problems, 
where the solution depends continuously on the initial 
and boundary conditions, inverse problems are 
unstable in the sense, that small changes in the data 
(for example, the measured interior temperatures) can 
produce large or even unbounded deviations in the 
solution [l-4]. Therefore, these so-called ill-posed 
problems are difficult to solve, especially if measure- 
ment noise is present. 

Inverse problems have been addressed in exper- 
imental investigations on heat transfer for a long time. 
The monograph of Kudryavtsev [5] summarizes the 
early work of Russian researchers. Various elegant 
methods based on simplified analytical solutions of 
the unsteady heat conduction equation are given. 
They allow an approximate determination of the sur- 
face heat flux from temperature measurements inside 
the body under special, and thus in general restricting, 
circumstances. Hence, the methods are inapplicable 
to a wide range of problems, which are characterized, 
for example, by fast transients or few and noisy 
measurements. Continuous further development of 
methods for the solution of inverse heat conduction 
problems has been in progress in engineering and 
applied mathematics. They have been discussed in 

several recent monographs and a large number of 
contributions in mathematical and engineering jour- 
nals. Beck et nl. [I] gave a review with special emphasis 
on application in heat transfer. In refs. [2--I] fun- 
damental mathematical results on general inverse 
problems are presented. A number of numerical tech- 
niques for problems from various areas of application 
are compiled in ref. [6]. The solution techniques for 
inverse problems can be classified in exact methods 
[I], parameter estimation [I, 61 and regularization 
techniques [l-4] and difference methods [I. 7. Most 
of the recently developed methods tried to minimize 
the sensitivity of the solution on the specified data 
(i.e. the measurements) by some mathematical artifice. 
However, some authors chose a completely different 
approach. They tried to reformulate the problem in 
one way or another to avoid, at least to some extent, 
the ill-posedness of the inverse problem. El Bagdouri 
and Jarny [8] reformulated the inverse problem as an 
optimal boundary control problem, which is solved 
by a standard optimization technique. Despite the 
promising reformulation, their approach leads to a 
numerical scheme which is close to a classical zeroth- 
order regularization technique [I]. Weber [9] replaced 
the heat conduction equation by an approximate 
hyperbolic equation. The direct solution of a well- 
posed initial value problem for the resulting damped 
wave equation gives good estimates of the unknown 
quantities at the body’s surface. 

In the present study, a new approach is chosen to 
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heat flux to the fluid (kW m-‘1 
heat flux to the evaporator tube [kW m-‘1 
spatial coordinate [m] 
eigenvalue 

T temperature [K] 

NOMENCLATURE 

dimensionless thermal diffusivity, 

(i/PC,) (rrcr/L 2, 
thermal diffusivity of layer i [m’ s- ‘1 
specific heat [kJ kg- ’ K- ‘1 
dimensionless estimation error 
(temperature) 
estimation error (temperature) [K] 
control laws [kW m- ‘1 
dimensionless heat flux (see equation (2)) 
dimensionless heat flux (see equation (3)) 
dimensionless correction factor 
correction factor [s- ‘1 
correction factor [kW K- ’ m-’ s- ‘1 
boundary of different layers of the 
composite material [m] 
length of the one-dimensional heat 
conduction body [m] 
mass tlux [kg me2 s- ‘1 
pressure [bar] 

s 

E 

8 

abbreviation (see equation (31)) 
dimensionless error of temperature 
measurement 
dimensionless estimation error (heat flux) 
dimensionless thermocouple time 
constant, 9/r,, 
thermocouple time constant [s] 
thermal conductivity [kW m- ’ K- ‘1 
design deficiency 
dimensionless measurement location, 

TM/L 
abbreviation (see equation (39)) 
density [kg m- ‘1 
time [s] 
dimensionless correction factor 
correction factor (s- ‘1 
eigenfunction. 

Superscripts 
(i) layer i ^ 

estimated quantity 
asymptotic state 
rough estimate. 

.Y dimensionless temperature, (T- Tref)/Trer 
,t quality [-_I Subscripts 

J dimensionless temperature measurement, i inner 

( T, - T,,r)/ T,cr M measurement 
z dimensional spatial coordinate, r/L. 0 outer 

ref reference 
Greek symbols 

xr Fourier coefficient s, 
setpoint 
initial condition. 

solve inverse heat conduction problems. It is based 
on the well-known concept of state and disturbance 
observers, which has been developed in systems theory 
since the early 1970s for different classes of dynamic 
systems [IO-131. These methods have been designed 
to reconstruct the whole system state from a few easily 
available measurements in real time. The estimated 
states are used to compute a model-based control 
law to improve closed-loop control performance of 
complex systems. Besides the application in control 
the techniques have also been employed to merely 
get more quantitative information about a dynamic 
system from a limited number of measurements. This 
enhanced process knowledge is a basis for better and 
more reliable process supervision strategies. Various 
applications, even on industrial processes, are re- 
ported in survey papers [ 14, 151. 

The application of observers to inverse problems 
results in the solution of an initial value problem for 
a modified model equation, where the inputs and the 
system parameters are known. The model outputs 

which are the unknown quantities of the original 
inverse problem can be computed in a cause and effect 
sequence by a common numerical method. Hence, in 
contrast to most of the other techniques a direct (or 
forward) problem is solved to compute the interesting 
quantities such as time histories of surface heat flux 
and spatial temperature profiles in heat conduction. 
This direct problem is usually of a better condition 
than the inverse problem, i.e. it is well posed. 

The first part of this paper introduces the observer 
scheme by means of a simple tutorial inverse heat 
conduction problem. A theoretical analysis is carried 
out to give a deeper insight in the strengths and weak- 
nesses of the method. These results are of direct use to 
design observers for complex inverse heat conduction 
problems of technical significance. As an example the 
estimation of surface heat flux time histories in forced 
convection transition boiling from temperature 
measurements inside the evaporator wall is presented 
in the second part. Some experimental results are 
given to demonstrate the capability of the technique. 
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FIG. 1. One-dimensional heat conduction system. 

2. A TUTORIAL EXAMPLE 

The heat conduction problem (see Fig. I) to be 
studied in this section is given by a one-dimensional 
heat conduction equation in dimensionless form 

; (z, I) = us (z, f), IE(O,l), t>o (1) 

with boundary and initial conditions 

go,0 = g(r), r 2 0 (2) 

~(l,f)=h(l), tao (3) 

x(2.0) = x0(z). (4) 

The heat flux functions g(t), h(t) and the initial tem- 
perature profile x0(z) are assumed to be consistent at 
t = 0. In the interior of the body at location z = {, 
0 < { < 1, a temperature measurement is taken. The 
measurement device usually does not reveal the exact 
temperature x(& r). This is a consequence of the 
unavoidable time lag of the thermocouple sensor and 
of deterministic or stochastic measurement errors. 
The measurement model 

8 dy’(O 
7 +Y'w = -453 0, Y’(O) = x0(r) 

YW = Y’W +w. 
accounts for a sensor time lag of magnitude 0 and 
some unknown additive measurement error s(t). A 
simplification which is adequate to demonstrate the 
main effects is given as 

Y(f) = x(5, t) + a(t). (5) 

This simplified model can be understood to include 
measurement errors as well as the distortion of the 
measurement signal due to measurement time lags if 
the function S(r) is chosen suitably. 

The inverse problem to be studied is given by equa- 
tions (l), (3), (5) with known measurement y(t) and 
heat flux h(f) and unknown initial condition x0(z) and 
heat fluxg(t). The latter heat flux and the temperature 
profile x(z, r), especially the surface temperature 
x(0, r), are supposed to be determined by some math- 
ematical algorithm. A so-called ‘observer* will be used 
for that purpose. 

2.1. The observer equations 
Though the heat conduction problem stated above 

is linear, the observer design method of Zeitr [ 121 for 
non-linear distributed parameter systems is applied. 
The observer scheme is constructed in complete anal- 
ogy to linear lumped parameter systems [lo, 1 I]. An 

important advantage of this approach compared to 
the observer design method of Kiihne (131 for linear 
distributed parameter systems is its feasibility for 
more general non-linear heat conduction problems 
which arise if materials with temperature-dependent 
physical properties, non-linear heat sources or non- 
linear boundary conditions due to heat fiux control 
are considered. 

For the moment, the heat fluxes at both surfaces 
g(r), h(t) are assumed to be known quantities. Only 
the spatial temperature profile (the state) is supposed 
to be estimated from one temperature measurement. 
The principal setup of an observer for state estimation 
by means of the system inputs and measurements is 
shown in the block diagram of Fig. 2. A mathematical 
model of the process and of the measurement device 
is implemented on a computer in parallel to the real 
process. This mode1 is fed with all known process 
inputs (here the surface heat fluxesg(t) and h(t)). The 
process output y(r) (here a measured temperature 
inside the heat conducting body) is compared to the 
simulated output of the model. Due to unknown 
initial conditions of the mode1 x0(z), modelling and 
measurement errors, the measured and computed 
(temperature) signal will not coincide. The resulting 
output error y(f) -j(t)-a quantitative measure for 
the estimation quality-is weighted by a correction 
factor and fed to the process model as an artificial 
input quantity. The state variables of the mode1 con- 
verge to the states of the real process if so-called 
observability [lO-131 is given and if the correction is 
designed properly. Observability is a structural prop- 
erty of a system requiring all system states to be 
reflected in the measurements differently. If the 
dynamics of the observer-a synonym for the process 
and sensor models corrected by the estimation qual- 
ity-are chosen to be faster than those of the real 
process, the observer is able to follow the transients 
of the real process states in the sense of a servo control 
system. Hence, after some time the quantity z?(z, t) 
can be taken as an estimate of the true process state 
x(z, t) from the model. 

According to Zeitz [12], the observer equations are 
formed by adding suitable corrections to the model 
equations (l)-(3). These corrections consist of the 
weighted estimation quality y(f) -p(r). The observer 
reads as 

z~(O,l), t>O (6) 

; (0, 0 = s(t) +k*[YW -9w1, t 2 0 (7) 



1538 W. MARQUARDT and H. ALRACHER 

6(t) 

g(l)._hM 

T 
4 
hea udian 

* y(l) 

sys em * process 

FIG. 2. Block diagram of the state observer scheme. 

_I. 

&) = lI(f)+k,[?.(f)-f(t)], I> 0 (8) 

qz, 0) = 4,(?) (9) 

where the estimated measurements are given by the 
measurement model (5) with zero disturbance 

i’(t) = .f(5, t). (10) 

The correction factors k, in the observer equations are 
(non-linear) functions of the state variables and their 
spatial derivatives as well as of the inputs in general 
[12]. This basic state observer scheme can be extended 
if not all inputs are known as it is the case with the 
heat flux g(f) at the left boundary of the heat con- 
ducting body in Fig. 1. Assuming an adequate model 
for the unknown inputs, which is often termed as a 
disturbance model, the observer of Fig. 2 is modified. 
The disturbance model is added and also corrected 
by the weighted estimation quality (see Fig. 3). If 
observability is retained the combined state and dis- 
turbance observer yields estimates of the process state 
.<(:, t) (here the temperature profile) as well as of the 
input (here the surface heat flux i(t)) at the same 
time. This approach which is often used with lumped 
parameter systems (see, for example, Chap. 3.6 of ref. 
[ 161) is adopted here to estimate one of the boundary 
conditions of a distributed parameter system. 

A simple disturbance model for the unknown heat 
flux g(f) is given as 

FIG. 3. Block diagram of the state and disturbance observer 
scheme. 

Q(f) 
__ = 0; g(0) = go. 

dt (11) 

A deterministic interpretation of this model reveals a 
constant heat flux in some small time interval. Models 
of this type have been successfully employed for 
disturbance estimation in numerous applications in 
control. 

The equations of the extended observer consist of 
equations (6)-(9), where the known function g(t) is 
replaced by the estimated quantity i(t). This estimate 
is determined by the additional observer equation 

G(f) ~ = k,[_r(r) -i’(t)], 
dt 

B(O) = cj,,. (12) 

This equation reveals a fundamental property of 
observers for the solution of inverse heat conduction 
problems. The determination of the unknown surface 
heat flux, which is an input to the model, from the 
model outputs can be accomplished by an inversion 
of the model equations. For dynamic problems inver- 
sion is performed by one or more differentiations of 
the outputs with respect to time. Most of the exact 
analytical formulae for surface heat flux calculations 
from temperature measurements inside the body 
depend on differentials of the measurements. As 
examples the classical methods of Kastelin (p. 36 of 
ref. [S]) and Burggraf (p. 67 of ref. [I]) or the recent 
method of Tsoi [17] are referred to, where the tem- 
perature measurements must be differentiated infi- 
nitely times to determine the surface heat flux. In 
contrast. in the observer algorithm the surface heat 
flux is computed by time integration of the measure- 
ment. Since integration smoothes high frequency 
stochastic errors whereas differentiation roughens 
these signals, the sensitivity of the surface heat flux 
estimate with respect to measurement noise is lower 
for observers than for other methods which explicitly 
or implicitly rely on differentiation(s) of the measure- 
ments. 

After the observer structure is fixed, the remaining 
problem is the choice of the functional dependence of 
the corrections to meet the general requirements on 
an observer such as asymptotic stability and fast con- 
vergence to the states ofthe real process. This observer 
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design problem is solved by a study of the appropriate 
differential equations for the errors between the true 
and the estimated process states [12]. Introducing the 
errors 

e(z. 1) = .?(I, t) -x(2, t) 

s(t) = P(t) -g(t) 

the following error equations result after subtraction 
of the adjacent model and observer equations stated 
above : 

zE(0, l), t > 0 (13) 

$ (0,O = c(f)+k&(t)-4&t)], r > 0 (14) 

$1~) = k,[y(t)-.i(S,r)], t 2 0 (15) 

e(z, 0) = e&) (16) 

W) - = kJy(t) -2(<, r)], 
dt 

E(O) = E,,. (17) 

The estimated quantities computed by the observer 
differ from the true ones by the errors e(:, I) and e(t). 
The design of the observer would be optimal, if 

e(z, t) = 0, s(t) = 0, V z, t (18) 

could be accomplished. This is not possible in general 
because of non-zero initial conditions e,(z) and E,,. If 
the corrections could be chosen according to 

k I [y(t) - %t, 01 = - rp I e(z, 0 (19) 

~(0 + kz[J(l) -a(C, t)] = 0 (20) 

k&+(t) -a(<, 01 = 0 (21) 

k,Lr(r) - a(& 01 = - ~(0 (22) 

the errors would be determined by a set of homo- 
geneous equations with sink terms of strengths rp ,, ‘pz. 
For arbitrary initial conditions their solutions tend 
to zero for increasing 1. Hence, criteria (18) can be 
approximated arbitrarily close 

le(z, z)l G eps, Ie(t)l < eps, V z, t > t*. (23) 

The rate of convergence, represented by the values of 
eps and t+, can be determined by a proper choice of 
the (positive) design parameters cp,, ppz. The 
implementation of the correction terms as stated in 
equations (19)-(22) requires an exact knowledge of 
the errors e(z, r) and I which is obviously not avail- 
able. To resolve this difficulty the design methodology 
is approximated by the following choice of the weights 
in the error equations (13)-( 17) : 

k2 = k, = 0, k,= -k, k>O 

k,[y(r)-i( = -c#(z. 1) -.f(z, t)], $9 > 0. 

The quantity Z(z, r) is a rough estimate of the true 

spatial profile x(z, t). which is adequate to determine 
the correction term. This rough estimate could be 
computed for example by the simple linear trial func- 
tion ,f(z, I) = c,(r)z+cz(t), where the coefficients are 
determined from the known functions h(t) and y(r). 
Using 

p(z, I) = x(z, t) -.3(r, 1) (24) 

as an abbreviation, the final error equations read as 
follows : 

~(~~0 =a~~~,r)--~[e(-.t)-p(:,r)l. 

ZE(O,l), t > 0 (25) 

g (0,1) = E(f), t > 0 (26) 

~(l.O=O, rao (27) 

e(z, 0) = e&) (28) 

de(t) 
dr = -k[&r)-e(5, r)], E(O) = E,,. (29) 

The estimation quality of the observer with respect 
to criteria (23) is discussed in the next section by a 
theoretical analysis of the error equations. 

2.2. Analysis of the error equations 
Since the error equations (25)-(29) are linear, a 

closed solution could be deduced. This solution, how- 
ever, is too complex to assess qualitative features of 
the solutions e(z, t) and e(t). 

Instead of an analytical solution we first look at the 
eigenvalues of the set of equations (25)-(29), which 
display the qualitative dynamic behaviour such as 
stability and rate of convergence to an asymptote for 
large times. Due to the time varying forcing functions 
~(z, t) and s(t) this asymptote is not a steady state in 
general. As shown in Appendix A, the eigenvalues 
s are determined by the transcendent characteristic 
equation 

O=yssinh;,+kcoshy(l-<) (30) 

(31) 

This equation has an infinite number of complex solu- 
tions s,. For two limiting cases of the g-correction k, 
the eigenvalues can be determined explicitly to be 

s_, = 0 and s, = -u(in)*--, 

i=O,1,2,... for k +O (32) 

i=O,l,Z ,... for k+x. (33) 

Since all eigenvalues are real and not positive, the 
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observer scheme is always stable in the limiting cases. 
For k = 0, no satisfactory estimate can be ac- 
complished because of the zero eigenvalue in the 
spectrum (32); an error in the boundary condition 
.s(t) would stay at its initial value e0 at time t = 0 (see 
equation (29)). Numerical solutions of equation (30) 
have shown that for intermediate values of k insta- 
bilities may arise. They are indicated by some eigen- 
values with positive real part. A necessary condition 
for the choice of the tuning parameters is a stable 
observer or in other words eigenvalues with negative 
real parts. This condition can be checked directly by 
a numerical solution of the characteristic equation 
(30) or by dynamic simulation of the observer equa- 
tions (6)-(9) and (12). 

E(f) = j2 s- /I(;. t) cash pi d; 
0 

+ coshp;,_t, iP’coshp;6’ii(;,f)coshP(l-;)di 

The rate of convergence of the errors to zero is 
determined by the magnitude of the real part of the 
eigenvalues. The estimation errors decay faster the 
smaller all the (negative) real parts of the eigenvalues 
are. The characteristic equation and the eigenvalues 
in the limiting cases reveal that the rate of convergence 
is influenced by the type of material (a). the location 
of the sensor (r) and both tuning parameters (k, cp). 
The quantities a and 5 are usually fixed by the exper- 
imental setup under consideration. The rate of con- 
vergence can be manipulated by proper choice of k 
and cp. For large values of k it is determined mainly 
by the magnitude of rp (see equation (33)). 

Another question of practical importance is the 
magnitude of the asymptotic estimation errors for 
large times. They are not equal to zero, since there are 
non-zero driving functions p(c,r) and 6(l) in the error 
equations (25)-(28). To facilitate the analysis we 
assume that the dynamics of the homogeneous error 
equations are much faster than typical variations of 
the forcing functions with time. This assumption is 
always valid for fast observers, i.e. for large tuning 
parameters k and rp. Then, the errors follow the forcing 
functions in a quasi-steady manner and are given by 

It should be noted here that the asymptotic error is 
completely independent of the tuning parameter X-. 
Hence, k is only responsible for the rate of conver- 
gence. One should not conclude to choose cp as small 
and k as large as possible. For small o the assumption 
which leads to equation (38) is not valid any more. 
The estimation of the surface heat flux would not be 
of sufficient quality in this case. The magnitude of 
the design parameter k (and cp) is hmited above if 
significant measurement noise is present. For linear 
lumped parameter systems a detailed analysis of the 
relationship between the magnitude of the observer 
correction and the amplification of measurement 
noise in the estimates reveals that the dynamic behav- 
iour of infinitely fast observers-being characterized 
by infinitely large corrections-imposes high-order 
differentiations on the measurements [19,20]. Hence. 
for increasing corrections the smoothing property 
referred to above gradually ceases to be valid. 

The discussion of relation (38) H ith respect to some 
limiting cases in Appendix B and our knowledge of 
the eigenvalues of the observer for large k allow us to 
state some guide lines to avoid significant asymptotic 
errors in the heat flux estimates and to enhance the 
rate of convergence. 

0 = .$z, I)-f#(z, t)-p(:, t)], IE(O, 1) 0 Large values of p improve convergence. 
However, the influence of measurement errors b(r) 
and design deficiencies I~(z. I) tends to be smaller the 
lower the magnitude of p is. The rate of convergence 
should therefore be improved by enlarging the value 
of k alone and not that of rp. However. k (and q) must 
be limited above to avoid significant amplification of 
measurement errors in the estimates. 

g(o, 1) = E(f) 

$)=O 
I?(& t) = d(r) 

where P(r, t) and E(f) are defined as 

(34) 

(35) 

(36) 

(37) 

The solution P(z, t) of the boundary value problem 
(34)-(36) with time t as a parameter is accomplished 
by Green’s function method [18]. The unknown 
asymptotic error in the heat flux at the left boundary 
C(r) can be calculated from equation (37) to be 

-psinhp~5(t) (38) 
I 

p= ;. J( ) 

. The estimation is facilitated with small values of 
<, i.e. with a measurement close to the surface under 
consideration. For large values of p and good 
measurements (small 6(t)) the influence of the design 
deficiency p(:. r) almost vanishes; very good estimates 
are accomplished in this case. 

. Significant measurement errors lead to large esti- 
mation errors if the measurement is located deep in 
the heat conducting body. 

. The design deficiency jc(s. t) should vanish in the 
spatial mean for each time. This can be accomplished 
approximately by proper choice of .C(r. r). 
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The developed guide lines are of direct use for the 
design of observers to solve inverse heat conduction 
problems. They are also valid at least approximately 
for more complex problems as experience has shown. 

2.3. Implementation, tuning and evaluation of the 
observer 

The algorithmic implementation of the observer is 
a standard problem. In general, only a numerical solu- 
tion of the coupled partial and ordinary differential 
equations is tractable. A method of lines approach is 
best suited for that purpose. The spatial differential 
operator in the observer equations is discretized by 
some approximation scheme like finite differences, 
finite elements or a Galerkin method, finally leading 
to a system of ordinary differential equations in time 
[21]. These equations are combined with the measure- 
ment model and solved simultaneously with some 
standard integration algorithm for systems of stiff 
ordinary differential equations [22]. The accuracy of 
the solution is determined by the quality of the spatial 
approximation and by the error of the time 
integration. The number of grid nodes, which is 
required to achieve a certain degree of approximation, 
can be determined a priori by numerical solution of 
the direct problem such that the difference to a solu- 
tion with more nodes is negligibly small. Discretiz- 
ation errors of the time integration are controlled by 
adjusting the integration time step automatically 
to meet user specified error tolerances. Sufficient 
accuracy of the numerical results can be guaranteed 
independently from the observer design parameters. 
This is not true with difference methods for inverse 
heat transfer problems, where the discretization 
parameters usually coincide with the tuning param- 
eters of the algorithm [I]. 

The first step of observer tuning and evaluation is 
carried out by simulation. For that purpose, the pro- 
cess and the observer are implemented in the simulator 
according to the block diagram of Fig. 3. The 
unknown heat flux function g(t) is assumed in the 
simulation to test the estimation scheme. The simu- 
lation of the heat conduction system yields the time 
history y(t) which is supplied by the thermocouple in 
real experiments. The simulated measurement is fed 
to the observer. To generate ‘real’ experimental 
measurements random noise can be added according 
to equation (5). The estimated temperature profile 
_?(z, 1) and surface heat flux i(t) can be compared to 
the ‘true’ values of the simulated process. Thus, the 
estimation quality can be judged easily. By proper 
selection of test signals g(t) the observer can be opti- 
mized by the choice of the tuning parameters accord- 
ing to the requirements of the peculiar estimation 
problem under consideration. An example for the 
design procedure will be given with the technical prob- 
lem of the next section. 

After the observer scheme is optimized in simu- 
lations. the simulated measurements are replaced by 
temperature readings from the real experiment and 

are fed to the observer after A/D conversion. Since 
the observer uses only past but no future information 
the processing of the measurement can be carried out 
on-line if sufficient computing power is available to 
solve the observer equations in real-time. 

3. AN INVERSE PROBLEM FROM 

TRANSITION BOILING 

The inverse heat conduction problem to be solved 
by the observer technique introduced in the last sec- 
tion arises from the experimental study of the largely 
unknown wetting characteristics and heat transfer 
laws in forced convection transition boiling [23]. The 
heat transfer experiments arecarried out Lvith refriger- 
ant RI I4 as a test fluid by means of a closed exper- 
imental test loop with a vertical tube as test section. 
The main evaporator consists of a cylindrical copper 
block of 32.7 mm o.d. soldered onto a nickel tube 
with 1 mm wall thickness and 14 mm i.d. The copper 
block is heated by a sheathed resistance uire, rolled 
and brazed into a coiled channel on the copper 
surface. The evaporator is equipped with a couple of 
radially mounted thermocouples to detect the wall 
temperature. Steady-state experiments are carried out 
in the transition boiling region. Hence, feedback con- 
trol of the wall temperature is required. One of the 
thermocouples serves as a sensor to give the setpoint 
deviation of the wall temperature for the control sys- 
tem used. A detailed description of the experimental 
setup and of the control system is presented in refs. 
[23, 241. 

The local temperature and heat flux variations at 
the inner surface of the main evaporator can be 
employed for monitoring the wetting characteristics 
of the boiling fluid. This information is essential for a 
profound understanding of the boiling mechanism. 
Since the surface temperature cannot be measured 
directly without disturbing the boiling phenomena, an 
inverse problem must be solved to compute the time 
varying local surface temperature and the local heat 
flux from the heater wall to the evaporating fluid from 
temperature measurements below the heating surface. 
Due to the high frequency of the fluctuations in the 
unknown quantities, this inverse heat conduction 
problem is rather difficult to solve by any technique 

PI. 
An angular cross-section of the evaporator tube is 

shown in Fig. 4. It consists of three layers : the inner 
nickel tube, the solder and the outer copper block. 
The thermocouple, which will be used for wetting 
analysis and control of unstable boiling experiments, 
is soldered below the surface of the nickel tube at 
radial position rxl. The electric heater supplies the 
heat flux &(r) to the evaporator. The heat flux Q,(T) 
denotes the heat flux from the evaporator wall to the 
evaporating fluid. Due to the wetting fluctuations on 
the inner tube wall, all the heat fluxes and tem- 
peratures must be considered as functions of time even 
in the case of steady-state experiments. Though the 
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FIG. 4. Schematic of the experimental setup; cross section of the evaporator tube with associated measure- 
ment and control system. 

time averages of both heat flows are equal, the fluc- 
tuations around these mean values will differ as a 
consequence of the heat capacity of the wall. The flux 
g,(r) is known at any time, since it can be calculated 
from the measured temperature T,,(s) by means of a 
mathematical model of the heater and the controller. 
This is not true for Q%(T) which is determined by the 
stochastic wetting at the inner tube wall. 

3. I. O&rrer design 
The dynamic bchaviour of the evaporator wall is 

assumed to be modelled adequately by a one-dimen- 
sional heat conduction equation in the radial direction 
for a composite material. The temperature gradients 
at the inner and outer tube wall 

cdted temperature at the thermocouple to the true 
temperature in the heat conducting body. 

The unknown heat flux 4%(r) is represented by a 
simple model of type (11) 

W4 - = 0, 
dt 

4,(O) = fjz,, w 

This model must be used, since the true heat transfer 
process is too complex to be modelled with some 
detail. Nevertheless, it will be shown that the observer 
calculation yields reliable estimates for the true 4% 

The observer equations for the evaporator tube are 
formed in complete analogy to the tutorial example 
of the previous section 

i(“F(r,.r) = Q,(T) (40) 
z(r,T) = a”’ 

( 
f T (r, 7) + $ (r, 7) 

) 

aT”J 
I.(” 7 (ro, 7) = &(7) (41) 

are determined by the surface heat fluxes 4, and 4”. 
The upper indices refer to the different materials (see 
Fig. 4) nickel (1) (solder (2)) and copper (3). The heat 
flux QH is related to the measured temperature Thl(7) 

and to some controller setpoint T, by the non-linear 
control law 

b(7) =fi[T~(dl+f@‘s). (42) 

The control of the evaporator which is open-loop 
unstable during transition boiling conditions is dis- 

-$#(r,7), i = l(l)3 (45) 

j_( JJ 
aii=f IJ 

-g- (r,, 7) = i,(7) (46) 

1’1’ 

(@ IJ 

F(r,,,7) = i”‘T(r,8,7) (47) 

At2’ T (r,., 7) = 2.“) T (r,,, 7) (48) 

j,( 3) 
@3’ 

7(ro,7) =f~Vd~)l+_f~(TJ (4% 

f’“(r,O) = @(r) t i = 1(1)3. (50) 

cussed in detail in ref. [24]. The thermocouple model *=I 

gdL,(r) dr 
;i[tc”(rMr7)-~~(f)1+khl[Th((7) 

ds + T,(T) = T”‘(r,,r), TM(O) = TM,, 
_fM(,(r)], FM(O) = FM@. (51) 

(43) 

a first-order lag with time constant 9 relates the indi- 
d;, (7) 
- = w-,(7) - %(7)1, 

ds 
i*(o) = 8,,. (52) 
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A rough estimate of the time-dependent spatial pro- 
files of the temperature error e”‘(r, T) in each layer i 
of the tube is accomplished by means of a spatial 
function of exponential type which coincides at pos- 
ition r = rM with the known output error. The remain- 
ing parameters of the observer are 4, kM and k,. They 
must be tuned in simulation experiments using the 
guide lines as developed above. The unknown initial 
conditions for the observer equations are determined 
from the assumption of zero fluctuations of 4, in a 
steady-state experiment. More details on the deter- 
mination of the model parameters (especially the 
thermocouple time constant 9) and on the design of 
the observer structure by analysis of the adjacent error 
equations may be found in ref. [25]. 

The observer (and the process model during 
observer tuning) is implemented by means of a general 
purpose software package for the transient simulation 
of chemical engineering processes [26], which also 
supports the design and the evaluation of observers 
[271. The package is block-oriented in the sense that 
complex simulation problems can be defined on the 
basis of standardized model blocks for different equip- 
ment stored in a model library. 

A rectangular wave with non-zero mean is chosen 
as a test function (i.(r) for observer tuning. Three 
representative test frequencies of 5, 16 and 25 Hz have 
been determined by a Fourier analysis of measured 
temperature fluctuations and the following con- 
siderations. Low frequency fluctuations which form 
the main contribution to the temperature signal under 
transition boiling conditions [23] must be matched 
very closely. Temperature signal components occur- 
ring in a medium frequency range (IO-20 Hz) must 
be matched satisfactorily, whereas fluctuations of sig- 
nificant amplitude well above 20 Hz are rather a result 
of the signal processing than of the wetting of the 
heat transfer surface due to the thermal inertia of the 
system and the damping of the thermocouple. To 
prevent misinterpretation of the experimental results, 
signal components in the higher frequency range 
should be damped in amplitude by the observer algo- 
rithm itself in addition to a possible low pass filtering 
of the measured temperatures (see Section 3.2). Figure 
5 shows the simulation results for the final set of 
tuning parameters with the three test signals. A trade- 
off between estimation quality and sensitivity to 
measurement noise has been established. Higher cor- 
rections (k, cp) would result in a significant ampli- 
fication of measurement noise. 

3.2. Experimental results 
Since real-time estimation is not required in this 

application, the analogue temperature measurements 
taken from the experiments under different boiling 
conditions are digitized and recorded by means of a 
transient recorder. The digital measurement signal is 
transferred to the computer for processing by the 
observer algorithm. The estimated temperature pro- 
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FIG. 5. Evaluation of the observer design for different rec- 
tangular heat AUX oscillations. I#I = 1.6 x IO3 s- ‘, kM = 

2x10’s_‘.k,=4x106kWK-‘m-?s-‘. 

file f(r, 7) and the surface heat flux G=(r) are a result 
of the computations. 

Preliminary simulation experiments have shown 
that high frequency noise may result in significant 
errors in the heat flux estimates. A Fourier analysis 
of experimental temperature data reveals some 
measurement noise at frequencies well above 20 Hz. 
A low pass filter is therefore used in the experiments 
to eliminate high frequencies which from physical 
reasons must result from noise. An important ques- 
tion is the choice of an optimal corner frequency of 
the signal filter above which the noise and possibly 
part of the wanted signal is damped significantly. Due 
to the heat capacity of the evaporator tube between 
the measurement location and the inner surface high 
frequency oscillations in C& are damped to amplitudes 
of the size of the experimental uncertainties. Heat flux 
fluctuations of a frequency of 20 Hz and of a typical 
mean amplitude lead to temperature oscillation ampli- 
tudes at the thermocouple position of about 0.05 K. 
This is comparable to the uncertainty resulting from 
the thermocouple position and time constant (23,251. 
Such fluctuations are further damped by the thermo- 
couple itself, which reveals a comer frequency of 
about 2.7 Hz. A low pass filter with a significantly 
higher corner frequency of 16 Hz is chosen to smooth 
measured temperatures before A/D conversion and 
processing by the observer algorithm. Hence, high 
frequency measurement noise is eliminated. The filter, 
however, also modifies the wanted signal--especially 
in the range of the corner frequency-to some extent. 
Its use should therefore be renounced. In our appli- 
cation the filter is indispensable, since the high fre- 
quency noise superimposing our measurements would 
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FIG. 6. Boiling curve of refrigerant RI 14. 

lead to gross estimation errors in the estimated heat 
flux amplitude as simulations with noisy measure- 
ments have shown. 

Temperature fluctuations are analysed for a com- 
plete boiling curve shown in Fig. 6. In Fig. 7 five 
typical results for different boiling regions are 
presented. The respective data are marked in Fig. 6. 
Each plot in Fig. 7 shows the thermocouple reading 
TM(s), the estimated surface temperature ?(r,, 5) and 
heat flux 4%. The plots clearly indicate, that the differ- 
ence between the measured and the surface tempera- 
ture, T,(T)- f(r,, T), is proportional to the surface 
heat flux 4x plotted in the upper part of the diagrams. 
The slope of the boiling curve (Fig. 6) beyond the 
critical heat flux starts to decrease remarkably at state 
No. 2. This is the region where the temperature ampli- 
tudes begin to increase continuously until state No. 4 
is reached. Then, they decrease again to the level 
shown in plot No. 5, which represents the film boiling 
region. It is in state No. 2 where the heat transfer 
coefficient reaches its maximum [23]. It seems that this 
region marks the end of pure nucleate boiling. We 
assume that at higher wall temperatures already small 
vapour spots are generated on the wall. They lead to 
higher amplitudes and a signal characteristic with an 
increasing contribution of low frequencies in the tem- 
perature estimates. The computed surface tem- 
perature fluctuations in nucleate boiling (state No. 
1) can hardly be the result of pure nucleation. The 
presumable bubble frequency is significantly higher 
than the frequency of the fundamental wave (15-20 
Hz) of the temperature fluctuations. High frequency 
signal components which result from nucleation of 
single bubbles reveal very small amplitudes. They 
could hardly be detected by the thermocouple sensor 
if the thermal inertia of the system and the low pass 
filtering are taken into account. Further, it can be 
shown experimentally by a study of displayed tem- 
perature readings in convective heat transfer that the 

band width of the superimposing noise is significantly 
smaller (about 30%) than the one in state No. 1 of 
Fig. 7. Therefore, the fluctuations of state No. I are 
most likely a result of vapour generation at the heated 
surface. The phenomenon could be explained by an 
interference of a few bubbles generated in the vicinity 
of the thermocouple dip with slightly differing fre- 
quencies. Another interesting fact is the negative heat 
fluxes occurring in the film boiling region (signal No. 
5) during very short periods of time. It could probably 
result from hot vapour spots contacting the surface 
immediately after a local temperature decrease. Such 
questions will be the subject of further investigations. 

In the literature, it is often assumed that transition 
boiling is characterized by a combination of film boil- 
ing and nucleate boiling each of v hich alternately 

occurs on the heating surface. The dependence of the 
average heat transfer rate on the temperature differ- 
ence is considered to be primarily a result of the vari- 
ations in the time fraction, for which nucleate or film 
boiling conditions exist at a given location. Our results 
indicate that the real situation is more complex. In 
Fig. 8 the amplitude variations of surface heat flux and 
temperature determined by the obsener are presented 
for different data points along the boiling curve. Even 
if we take into account the possible error of such 
amplitudes (see Section 3.3), it is quite clear that the 
concept of an oscillation of the heat flux between more 
or less constant limiting values is far from the physical 
reality. Future studies are required to develop a more 
realistic model of the transition boiling mechanism. 

3.3. Reliability of the estimation results 
The proper interpretation of the experimental 

results requires a detailed analysis of the reliability of 
the estimation. Some aspects concerning the esti- 
mation quality, such as representation of amplitude, 
phase and shape of the test signal, are discussed first 
by means of the simulations in Section 3.1. Figure 5 
shows that in case of 5 Hz oscillations. amplitude 
and even wave form is matched satisfactorily. The 
observer is able to follow heat flux fluctuations up to 
16 Hz, where the amplitude is estimated adequately 
but the wave form cannot be reproduced properly. 
The amplitudes of the 25 Hz test signal are damped 
significantly in the estimation. As referred to above, 
the damping of high frequency signal components 
is considered as a welcome effect, since it prevents 
misinterpretation of noise as a boiling phenomenon. 
In all cases a phase lag is apparent and the signal 
shape is not matched exactly. Due to the servo control 
property of the observer these deficiencies are 
unavoidable in principle. They could be diminished 
only if larger corrections are employed at the expense 
of a higher sensitivity to noise. The phase lag is with- 
out significance in our application since only infor- 
mation on the heat flux oscillation amplitudes is of 
interest for an interpretation of the boiling phenom- 
ena. The same is true for the signal shape as long as 
the fluctuation amplitudes are estimated properly. If 
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an exact process model and temperature measure- 

ments with negligible noise are assumed as it has been 
the case in the examples of Fig. 5, the estimated fluc- 
tuation amplitudes above 16 Hz are too small. The 
magnitude of the amplitude error increases with 
increasing frequencies of the heat flux fluctuations. 

As for any solution technique of inverse heat con- 
duction problems the most serious errors are a conse- 
quence of imperfect modelling. Possible sources of 
significant errors are the system parameters and the 

observer mfculdiun 

tempemiure difference AI =Iw~-Tr,,t 

FIG. 8. Heat flux/temperature variations at the surface along 
the boiling curve ; each point in the plotted amplitude bands 
represents a computed data set (&, f(r,)- T,,) at a given 
time T,; the circles represent the time and space averaged 

values (4, AT). 

structure of the disturbance (heat flux) and the process 
(evaporator) model. 

The most uncertain parameters are time constant 
and radial position of the thermocouple. A detailed 
analysis [23, 251 shows that the relative errors in the 
temperature signals are well below 0.1 K. A variation 
of the thermocouple time constant and radial 
position, of the controller gain and of the thermal 
conductivities has been carried out. Some results are 
shown in Figs. 9-11. The frequency and amplitude 
characteristics of the fluctuations are retained in all 
cases. The errors in the heat flux amplitudes are neg- 
ligible for an erroneous control gain. Figures 9 and IO 
compare the estimation results computed with the 
nominal value of the position rM and time constant 9 
to those based on erroneous values of these model 
parameters for operation point a of the boiling curve 
of Fig. 6. The differences in the surface heat flux 
and temperature estimates are plotted over time. The 
amplitude errors of the estimated heat flux are con- 
siderably smaller due to errors for uncertainties in the 
thermocouple position (Fig. 9) than for those due to 
its time constant (Fig. lo), if the assumed relative 
parameter errors are taken into account. In both cases 
no mean offset in the heat flux estimate occurs. since 
both parameters only affect the dynamics of the 
process. They are meaningless for the steady-state 
(or mean) values. A higher (lower) value of the time 
constant or radial position reflects a higher (lower) 
value of the time lag between measured temperature 
and surface temperature. This difference in the mod- 
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elled time lag leads to an underestimation (over- 
estimation) of the surface heat flux peaks. If these 
errors occurred in the real experiment, they cannot be 
neglected because of the significant amplitude errors 
(Figs. 9 and 10). However, we feel that the exper- 
imentally determined [23, 251 nominal parameter 
values used in the computations are the best to 
describe our setup. Figure II shows the sensitivity of 
the estimation results with respect to thermal con- 
ductivity errors. The estimated surface temperature 
and heat flux are higher (lower) in the mean for a 
higher (lower) conductivity. However, the effects are 
negligibly small even for errors of a few percent in the 
thermal conductivity. 

To check the sensitivity of the estimation results 
with respect to differing disturbance models an alter- 
native description has been compared to the simple 
model of this study in ref. [25]. It assumes a pro- 
portionality between heat flux and temperature 
difference between fluid and evaporator wall. The heat 
transfer coefficient has been estimated in this case. 
The mean surface heat flux is slightly lower with the 
latter model whereas the signal characteristics and 
amplitudes are retained. 

The last modelling error to be discussed here is 
related to the structure of the evaporator model which 
is only one-dimensional in the radial direction. To 
simplify the analysis heat fluxes in the other two direc- 
tions have been neglected. A simple theoretical analy- 

sis of the resulting error which is based on an energy 
balance of a volume element containing the thermo- 
couple dip is carried out in ref. [23]. The real ampli- 
tudes are always larger than those calculated by the 
one-dimensional model. The deviations are, however, 
shown to be less than 20%. 

If measurement or quantization noise (as a conse- 
quence of A/D conversion) is present high corrections 
(k, cp) tend to amplify the noise leading to enlarged 
heat flux amplitudes. The magnitude of such errors 
can be checked by simulation experiments, if sufficient 
information on the noise signal is available. The type 
of quantization errors can be determined rather pre- 
cisely from the experimental setup. Simulations show 
that heat flux errors due to unavoidable quantization 
noise are negligibly small. A determination of the level 
of noise in the temperature measurements after low 
pass filtering is very difficult for real experimental 
conditions. Temperature measurements for pure con- 
vective heat transfer reveal fluctuations of a band 
width of 0.03 K in the low frequency range. This 
number could be taken as an upper limit for the level 
of noise. Hence, it cannot be excluded that some 
measurement noise superimposes the wanted signal in 
the frequency range below 20 Hz. Simulation exper- 
iments with a stochastic measurement error of band 
width 0.03 K and frequency of 15 Hz indicate an 
amplification of the estimated heat flux amplitudes of 
some 13 kW m-*. 
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Accounting for the different sources of estimation 
errors it can be summarized that the signal chardc- 
teristics are very close to the true ones. All signals 
display a phase lag of about 0.01 s. It is anticipated 
that the amplification of the amplitudes due to noise 
and their damping due to the one-dimensional cal- 
culation compensate each other to some extent. The 
calculated amplitudes are probably smaller than the 
true ones. A cautious estimate leads to a range of 
amplitude errors of about 10% for low frequency 
signals (< IO Hz) increasing to 30% for high frequency 
signal components of about 20 Hz. 

exactly in case of fast dynamics. This dtsadvantage 
can be diminished by choosing correction terms with 
a larger magnitude. Due to the increasing sensitivity 
to noise with an increasing magnitude of the correc- 
tions, a trade-of between the accuracy of the estimates 
and the amplification of measurement noise must be 
accomplished. 

Since this inverse problem from transition boiling 
is rather difficult to solve, an alternative solution 
method has been applied to approve the results 
obtained with our method. The space marching finite 
difference technique of Raynaud [28] has been chosen. 
The sensor dynamics, which are neglected in the orig- 
inal algorithm, are included here by a function speci- 
fication method. The tuning parameters (time and 
space increments) are optimized in simulations with 
respect to the special requirements of our problem. 
The estimated surface temperature and heat flux Buc- 
tuations agree very well for both methods. The signal 
characteristics are very similar. The signal amplitudes 
are slightly larger for the difference method and there 
is a small phase difference between the estimates of 
both methods as expected. This result leads us to the 
conclusion that either our estimation results obtained 
by the observer are rather reliable or that it is not 
possible to get any better results with other methods. 

4. CONCLUSIONS 

An alternative estimation scheme which is com- 
parable to the observer of our investigations is a Kal- 
man filter [29. 301. Its structure is identical to that of 
the state and disturbance observer of Fig. 3. The only 
difference between both approaches is the way to 
determine the corrections k,. While observers are 
designed on a pure deterministic basis by a study of 
stability and rate of convergence of the adjacent error 
equations, the Kalman liltsr corrections arc computed 
to minimize the variance of the stochastic estimation 
errors. A further improvement of the estimation qual- 
ity in case of off-line estimation can be accomphshed, 
if an optimal smoothing filter [29] is applied. The 
estimate given by the smoothing filter consists of a 
weighted average of the estimates of two Kalman 
filters-a forward and a backward filter. The forward 
filter starts at the beginning of the measurement time 
series and processes only past measurements u hereas 
the backward filter starts at its end and hence pro- 
cesses only future measurements. This scheme incor- 
porates both past and future measurements to com- 
pute an actual estimate. which has been noted before 
[I, 71 to be advantageous with parameter estimation 
or difference methods. Such a smoothing filter would 
improve the estimation quality significantly at the 
expense of a more complex algorithm. 

A new approach to the solution of non-linear 
inverse heat conduction problems by means of state 
and disturbance observers has been suggested. Most 
of Beck et trl.‘s criteria for evaluation of methods to 
solve inverse heat conduction problems (see p. 38 of 
ref. [I]) are met by this technique. The most important 
strengths of our approach are the insensitivity to 
measurement noise due to the solution of a well-posed 
problem (if moderate corrections are employed), the 
ease of implementation by modifying existing com- 
puter programs for the solution of the direct problem 
and the systematic treatment of the usually unknown 
initial temperature profile at the starting time of the 
algorithm. There are no restrictions with respect to 
the number of sensors or observations, the size of time 
steps or spatial intervals, the type of coordinate system 
or to the type of heat conducting solid. Temperature- 
variable properties and composite materials are per- 
mitted. The application of the method to a non-stan- 
dard problem of technical significance demonstrates 
its flexibility. It is shown, that the dynamics of the 
sensor as well as additional model equations such as 
the control system can be incorporated straight- 
forwardly in the esttmation scheme. 

One shortcoming of the method is the unavoidable 
phase lag and its deficiency to match the signal shape 
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APPENDIX A. DEVELOPMENT OF THE 
CHARACTERISTIC EQUATION (30) 

The development of the characteristic equation (30) 
requires the statement of the eigenvalue problem of the error 
equations (25)-(29). The errors may be expressed by the 
infinite Fourier series 

which converge uniformly in c and r. These trial functions are 
introduced in the homogeneous error equations (25)-(29). 
Each of the resulting four equations consists of an infinite 
series which is equated to zero. The equations are fulfilled if 
each of the terms in the series is equated to zero. The fol- 
lowing eigenvalue problem of Sturm-Liouville type results 
after elimination of the Fourier coefficients ‘1, if the index i 
is omitted 

d’$ 
as(-) = (s+(P)JI(-) 

~(o)-;$(<) =o. $I) =o. 

The trial function 

I#+) = A sinh gc+ B cash y: 

equates the differential equation to zero for arbitrary con- 
stants of integration A and B. If the trial function is inserted 
in the homogeneous boundary conditions of the eigenvalue 
problem the characteristic equation (30) results after some 
algebraic manipulations. 

It should be noted, that this approach requires an expan- 
sion theorem which guarantees the expandability of an arbi- 
trary function by an infinite series of eigenfunctions $(:) in 
(0,l). A proof of such a theorem is standard for the eigen- 
value problem above tf k = 0 (see for example p. 185 of ref. 
[31] or Chap. V of ref. [32]). A proof for k # 0 IS not yet 
known. 

APPENDIX B. SOME LIMITING CASES FOR 
THE ASYMPTOTIC ESTIMATION ERROR Z(r) 

OF EQUATION (38) 

The limiting cases discussed in this appendix are the basis 
of the guide lines in Section 2.2. Note that 

p= f J( > 
is a large number even for moderate values of cp. For metals. 
a heat conducting body of length L = I m and a reference 
time of 1 s dimensionless a is of magnitude lOTa. The number 
K used in the approximations below is from (0.1). 

For small coordinates 5 

’ I 

f(f)< - 0 = --& 
s 
o ~(;,f)coshP(I--i)di--Ptanhp6(r). 

For small coordinates < and large tuning parameters p 

f(f):_O,p_r = 2p’eeP 
s 

jr& f)coshp(l -i)d,-pd(f) 
0 

ry 2p’ emPcosh wp 
I’ 
o &.r)di--p&r) 

= p2(ep’r-‘i+e-@+‘)) 
I 

‘~(<,r)dc-pJ(r) 
0 

* -p d(f). 
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For large coordinates < For large coordinates < and large tuning parameters p 
1 

E(r), _ , z p* cash KP p(C, 1) dC -p sinh p S(r). 14.0 4 - ! @ Wh 

UNE SOLUTION DES PROBLEMES INVERSES DE CONDUCTION THERMIQUE BASEE 
SUR OBSERVATEUR 

R&i-Le problemme inverse de conduction thermique apparait lorsque les temperatures sont mesu&s 
ri I’interieur dun corps pour connaitre la temperature et le flux a la surface. On introduit une nouvelle 
approche pour resoudre ce problime. Elle repose sur le concept des observateurs d&tat et de perturbation 
bien connu dans la theorie des systemes. Le profil complet de temperature dans le corps aussi bien que la 
temperature et le flux a la surface peuvent &re calculb a partir d’une ou plusieurs mesures de temperature 
a I’interieur, a I’aide d’un observateur parametrique distribue non lineaire. La technique est introduite et 
analysee theoriquement sur un exemple simple. L’approche est tinalement appliquee a un problbme 
difhcile et significatif en pratique. On evalue I’tvolution des oscillations locales du flux thermique et de la 
temperature sur la face inteme d’un tube Cvaporateur pendant des conditions transitoires d’tbullition. On 
prtsente des resultats exptrimentaux d’tbullition pour un refrigerant RI 14 s’icoulant en ascension dam 

un tube chauffe blectriquement. 

DIE L&SUNG INVERSER WARMELEITPROBLEME MIT HILFE VON BEOBACHTERN 

Zusammenfassung-Ein inverses Wgrmeleitproblem liegt dann vor, wenn die Temperatur im Inneren eines 
Kiirpers gemessen wird und daraus die Temperatur und der Wgrmestrom an der Obertlgche ermittelt 
werden solI. Es wird eine neuartige Methode zur Llisung derartiger Probleme vorgestellt. Sie beruht auf 
dem Konzept der Zustands- und StorgrciSenbeobachter, das in der Systemtheorie wohlbekannt ist. Aus 
einer oder mehreren Temperaturmessungen im Inneren kbnnen mittels eines nichtlinearen Beobachters fiir 
Systeme mit verteilten Parametern das Temperaturprotil im wgrmeleitenden K&per einschlieglich der 
Temperatur und des Wlrmestroms an der Oberfigche bestimmt werden. Die Rechentechnik wird zunlchst 
anhand eines einfachen Beispiels eingefiihrt und analysiert. Sodann wird das Verfahren auf ein schwieriges 
technisch relevanta Problem angewandt: Es wird die zeitliche Anderung lokaler Werte der W&me- 
stromdichte und der Temperatur an der inneren OberflHche eines Verdampferrohres im Bereich des 
Ubergangssiedens ermittelt. Als Grundlage dienen Messungen mit Kiiltemittel 114 bei Aufwgrtsstrcimung 

im senkrechten elektrisch beheizten Rohr. 

PEIBEHHE OSPATHLIX 3AJIAS TEXIJIOIIPOBO~HOCTH, OCHOBAHHOE HA 
fIPHHI&iI-IE HA6JIIO~EMOCTW 

Amsorarms-OBparxar sanasa rennonponommcru cocrour a onpenenenuu reameparypv H rennonoro 
noroxa ifa nonepxaomm Tena ~3 m4epeHti TeMnepaTypsr B Tene. OnHcbmacTcn HOBYB nomon I 

~UleHHlO~HHOrO KllaCCZl3aWl,OCHOBKHHbl~ HanOHXlEHHa6JllOItaeMOCTHCQCTOUHHKH BO3MylueHHK. 

H3BeCTHOM 83 TWpHH CHCTeM. nOJTHbI# TebUlepaTyPHbdi npO@HJIb B TeJTe,a Tame TeIIJlOBOi8 nOTOK H 

TeMl'l~aTypa Ha nOqXHOCTH MOryT 6brrb paCCWTaHbI IlO OIlHOMy HJlH HCCLOJlbKHM H3bfepeHHKM 

BHyTpeHHei'i TeMnePaTypbl npH nOMOUH npHHUHlIa Ha6ntonaeMocTH HeJlHHefiHOrO ~~IWleHHOrO 
IlKpaMeTpa. AaHHbdi MeTOA TeOpeTH¶ecKll aHUiH3HpyeTcK Ha llpOCTOM npHMepe. %TeM OH lIpRMeH- 

KCTCK K CJlOXHOii O@KTHOfi 3KAW?e, BaxHOi# B TeXHHWCKOM OTHOIIICHHH. OUeHHWeTCK pa3BHTHe BO 

BpeMeHH KOJle6aHHti JlOKaRbHbIX Tcl'lJlOBbIX IIOTOKOB H TeMnepaTyp Ha BHyTpeHHeii rlOlepXJlO17H 

TP*KH HcnapHTenn B yc~10aHax nepexornroro pemiua runemtn. fIpencrannenbt 3KcnepiibleHT8nbHMe 

lutHHxe iutn Bocxonnmero TeqeHHn KAnatnerO xJraJlareHTa RI14 B Tpy6e, HarpcBaeMOti 3JIeKTpHwcKHM 
TOKOM. 


